

Jim Euchner Abhijit Ganguly

Two types of innovation

- Innovation that feeds the existing profit engine
 - Most process innovation
 - Product improvement innovation
 - New feature innovation

No conflict with the existing profit engine

- Innovation that creates a new profit engine
 - New business innovation
 - Disruptive innovation
 - New business model innovation

Requires new governance & approaches

Crossing the Chasm*

* Geoffrey Moore

(c) Goodyear Tire & Rubber Co.

GI

Key Messages

- Successful innovation starts with the *customer*
- Customers may lead you to businesses that don't match your business model
- To deliver new business models requires new practices, often working with *new ecosystem partners*
- Doing so effectively requires learning through *disciplined experiments*
- Conducting the experiments requires managing the relationship to the performance engine

Business Model Innovation at Goodyear

3/23/16

Business Model Innovation at Goodyear

Source: Business Model Innovation in Practice – Research-Technology Management 2014

3/23/16

1. Generate business model options

- Develop coherent business models
- Archetypes are very helpful

2. Identify key assumptions for each option generated

Co-innovation assumptions	<	
– Who else needs to innovate for my innovation to matter?	Blind spots	
Execution assumptions		
– Can I build the right offering to the right user at the right time for the right cost & beat the competition?	Focus Area	
Adoption assumptions		
 Are there intermediaries who need to adopt my innovation before the end user can assess the full value proposition? 	Blind spots	

Source: Adapted from The Wide Lens – Ron Adner

3/23/16

3. Prioritize risks through stochastic modeling of the $\ensuremath{\mathsf{P/L}}$

Assumption	Type of assumption	Expected value based on current knowledge	But the highest it could be (guess)	And the lowest it could be (guess)
Price per unit	Execution	\$50	\$60	\$40
Licensing costs per unit	Execution	\$4	\$6	\$3
3 rd party channel incentive	Adoption*	\$12K	NA	NA
New hardware development by 3 rd party	Co-innovation*	\$350K	\$700K	\$200K

A stochastic model quantifies the risk

3

3/23/16

And tells you where to focus your efforts

4. De-risk through business experiments

Experiment example: Demonstrate customer value creation

- expensiv Assumption: Most breakdowns are related e far from home to improper management of tire inflation breakdo and can be prevented wns Aberdeen Scotland Perth o Dunder Glasgow Edinburgh • **Design:** Project team outfitted 50 trailers of a flagship European fleet United Kingdom Isle of Mar • **Results:** In a time period of 6 months,
- Results. In a time period of 6 months, many incidents that would have resulted in breakdowns were prevented
- **Conclusion:** Move forward to design a business model for the project

3/23/16

Experiment example : Willingness to pay for a recycled tire

(c) Goodyear Tire & Rubber Co.

- Assumption: Consumers will pay an X% premium for a green tire (New Earth tire)
- **Design**: Project team dressed/trained as in-store sales associates, pitching consumers the new concept (Wizard of Oz)

• Results:

3/23/16

- Consumers expected a discount (they saw recycling as a savings opportunity for Goodyear)
- Consumers would not compromise on any traditional performance attributes to get recycling as an additional feature
- Conclusion: Project cancelled

Experiment example : Supply chain for used tires

- Assumption: The right number and quality of used tires will be available at a specified cost on the open market
- **Design:** Project team went to a used tire collection & processing center to inspect flow and quality of used tires

• Results:

- Used tires had a very high value in the second hand market (impacting availability & cost)
- Available used tires did not pass our required technical specifications
- Conclusion: Project cancelled

3/23/16

Experiment example : Channel effectiveness for a new consumer telematics service

• Assumptions:

- -We can reach our target in shopping malls
- -Shopping malls will give 10% conversion rate
- **Design:** Project team created a kiosk in a shopping mall and hired contract salespersons to demonstrate and sell the service

• Results:

- Kiosk operational costs validated
- Consumers were willing to commit to solution
- Conversion rate was X% of overall mall traffic

• Conclusion:

- Work on cost structure (COGS & SGA) required
- Promotion required to drive more traffic to kiosk
- Sufficient conversion rate for taking project to next level

Pre sales form asking for: 1) Name 2) Price acceptance 3) CPF (SSN) 4) Signature 5) Date 6) Phone / email 7) Feedback

3/23/16

Experiment example : Technology in use in a UK supermarket truck fleet

- Assumptions: We can achieve higher service levels (tire maintenance) without investing in new technician manpower
- **Design:** Equipment commissioned to see if readings could be used by maintenance technicians

• Results:

- Initial readings problematic and inaccurate
- Drivers had to be educated to use the technology before every trip
- Conclusion:
 - Additional development needed

3/23/16

Experiment example : Technology and human behavior for a mining fleet

- Assumptions: By providing real time operator feedback, fuel consumption in mining haul trucks can be reduced by X%
- **Design**: Telematics devices fitted in haul trucks in a quarry to assess driver compliance with recommendations
- Results:
 - Initial savings did not meet targets
 - Mechanisms for influencing drivers identified
- Conclusion:
 - Experimentation continued

3/23/16

Business experiments should

- Be out in the real world *with* the market (not quite *in* the market)
- Have a SMART learning plan:
 - –Not SMART : Interview consumers in a shopping mall to understand if they will buy
 - -SMART: In the next <u>90 days</u>, we will "sell" our offering to <u>6%</u> of overall shopping mall traffic at a price point of <u>\$12 per user</u>
- Be cheap keep the learning ahead of the spending
- Be fast
- Shed light on key unknowns

Key Messages

- Successful innovation starts with the *customer*
- Customers may lead you to businesses that don't match your business model
- To deliver new business models requires new practices, often working with *new ecosystem partners*
- Doing so effectively requires learning through *disciplined experiments*
- Conducting the experiments requires managing the relationship to the performance engine

